The limit process of the difference between the empirical distribution function and its concave majorant

Vladimir N. Kulikova, Hendrik P. Lopuhaä

Abstract

We consider the process \(\tilde{F}_n - F_n \), being the difference between the empirical distribution function \(F_n \) and its least concave majorant \(\tilde{F}_n \), corresponding to a sample from a decreasing density. We extend Wang's result on pointwise convergence of \(\tilde{F}_n - F_n \) and prove that this difference converges as a process in distribution to the corresponding process for two-sided Brownian motion with parabolic drift.

MSC: primary: 60F05 62E20; secondary: 62G30

Keywords: Least concave majorant; Empirical distribution function; Brownian motion with parabolic drift; Isotonic estimation; Monotone density

1. Introduction and main result

Let \(X_1, X_2, \ldots, X_n \) be a sample from a decreasing density \(f \). Suppose that \(f \) has bounded support, which then without loss of generality may be taken to be the interval \([0, 1]\). Let \(\tilde{F}_n \) be the least concave majorant of the empirical distribution function \(F_n \) on \([0, 1]\), by which we mean the smallest concave function that lies above \(F_n \). The process

\[
A_n(t) = n^{2/3} (\tilde{F}_n(t) - F_n(t)), \quad t \in [0, 1],
\]

has been of interest to several authors. In Kiefer and Wolfowitz (1976), it was shown that \((\log n)^{-1} \sup_t |A_n(t)|\) converges to zero with probability one, but the precise rate of convergence or limiting distribution was not given. Wang (1994) investigated the asymptotic behavior of \(A_n(t) \), for \(t > 0 \) being fixed. The limiting distribution can be described in terms of the operator \(CM_I \) that maps a function \(h : \mathbb{R} \to \mathbb{R} \) into the least concave majorant of \(h \) on the interval \(I \subset \mathbb{R} \). If we define the process

\[
Z(t) = W(t) - t^2,
\]

\[\approx\]
where \(W \) denotes standard two-sided Brownian motion originating from zero, then it is shown in Wang (1994) that, for \(t > 0 \) fixed, \(A_n(t) \) converges in distribution to \(c_1(t) \zeta(0) \), where \(c_1(t) \) is defined in (1.5), and
\[
\zeta(t) = [CM_{\mathbb{R}}Z](t) - Z(t).
\]

Recently, Durot and Toquet (2002) obtained the same result in a regression setting.

In the present paper, we extend the pointwise result of Wang (1994) to process convergence of a suitably scaled version of \(A_n(t) \). For \(t \in (0, 1) \) fixed and \(t + c_2(t)sn^{-1/3} \in (0, 1) \), define
\[
\zeta_m(s) = c_1(t)A_n(t + c_2(t)sn^{-1/3}),
\]
where
\[
c_1(t) = \left(\frac{|f'(t)|}{2f^2(t)} \right)^{1/3} \quad \text{and} \quad c_2(t) = \left(\frac{4f(t)}{|f'(t)|^2} \right)^{1/3}.
\]

Define \(\zeta_m(s) = 0 \) for \(t + c_2(t)sn^{-1/3} \notin (0, 1) \). Our main result is the following theorem.

Theorem 1.1. Suppose that \(f \) satisfies

\(\begin{align*}
\text{(A1)} & \quad f \text{ is decreasing and continuously differentiable;} \\
\text{(A2)} & \quad 0 < f'(t) \leq f(t) \leq f(0) < \infty \text{ for } 0 \leq s \leq t \leq 1; \\
\text{(A3)} & \quad 0 < \inf_{t \in [0,1]} |f'(t)|.
\end{align*} \)

Let \(\zeta \) and \(\zeta_m \) be defined as in (1.3) and (1.4). Then the process \(\{\zeta_m(s) : s \in \mathbb{R}\} \) converges in distribution to the process \(\{\zeta(s) : s \in \mathbb{R}\} \) in \(D(\mathbb{R}) \), the space of cadlag functions on \(\mathbb{R} \).

In the remainder of this section we sketch the line of argument used to prove Theorem 1.1. All proofs are transferred to Section 2.

Let \(D_I \) be the operator that maps a function \(h : \mathbb{R} \to \mathbb{R} \) into the difference between the least concave majorant of \(h \) on the interval \(I \) and \(h \) itself:
\[
D_I h = CM_I h - h.
\]

Then \(D_I h \) is a continuous mapping from the space \(D(I) \) into itself. This is a consequence of the basic property for concave majorants, that for any interval \(I \subset \mathbb{R}, \)
\[
\inf_{t \in I} h(t) \leq CM_I (g + h) - CM_I g \leq \sup_{t \in I} h(t)
\]
(see for instance Kulikov, 2003). The key observation for proving process convergence is the fact that the process \(A_n \) is the image of \(F_n \) under the mapping \(D_{[0,1]} : A_n = n^{2/3}D_{[0,1]}F_n \). This means that in order to obtain the limiting behaviour of \(A_n \), we must investigate the limiting behaviour of \(F_n \) itself. This is described in the following lemma.

Lemma 1.1. Let \(f \) satisfy conditions (A1)–(A3). Then for \(t \in (0, 1) \) fixed, the process
\[
n^{2/3}(F_n(t + sn^{-1/3}) - F_n(t)) - (F(t + sn^{-1/3}) - F(t)) \quad \text{for } s \in \mathbb{R},
\]
converges in distribution to the process \(\{W(f(t)s) : s \in \mathbb{R}\} \) in \(D(\mathbb{R}) \).

Note that \(n^{2/3}(F(t + sn^{-1/3}) - F(t)) \approx n^{1/3}f(t)s + f'(t)s^2/2 \) and that the operator \(D_{[0,1]} \) is invariant under addition of linear functions. For this reason, the term \(n^{1/3}f(t)s \) will have no effect on the limiting behaviour of \(A_n \), which will therefore be determined by the concave majorant of Brownian motion with a parabolic drift.

In order to apply Lemma 1.1 together with the continuity of the mapping \(h \to CM_I h - h \), we must consider concave majorants on fixed intervals. However, up to scaling constants, the processes \(\zeta_m(s) \) correspond to concave majorants of \(F_n(t + sn^{-1/3}) \) with \(s \) in intervals \([-tn^{1/3}, (1 - t)n^{1/3}] \) increasing to \(\mathbb{R} \), whereas the process \(\zeta(s) \) corresponds to the concave majorant of \(Z \) on \(\mathbb{R} \). Hence, in order to establish Theorem 1.1, we must show that with high probability, the concave majorants of \(Z \) on the whole real line and on large bounded intervals
Proof of Lemma 1.1. Let \(X_{n}(s) \) denote the process in (1.6). All trajectories of the limiting process belong to \(C(\mathbb{R}) \), the separable subset of continuous functions on \(\mathbb{R} \). This means that similar to Theorem V.23 in Pollard (1984), it suffices to show that for any compact set \(I \subset \mathbb{R} \), the process \(\{X_{n}(s) : s \in I\} \) converges in distribution to the process \(\{W(f(t)s) : s \in I\} \) in \(D(I) \), the space of cadlag functions on \(I \). We will apply Theorem V.3 in Pollard (1984), which is stated for \(D[0,1] \), but the same result holds for \(D(I) \).

Let \(E_{n} \) denote the empirical process \(\sqrt{n}(F_{n} - F) \) and let \(B_{n} \) be a Brownian bridge constructed on the same probability space as the uniform empirical process \(E_{n} \circ F^{-1} \) via the Hungarian embedding of Kőmlos et al. (1975). Let \(\xi_{n} \) be a \(N(0,1) \) distributed random variable independent of \(B_{n} \). Define versions \(W_{n} \) of Brownian motion by \(W_{n}(t) = B_{n}(t) + \xi_{n}t, t \in [0,1] \). Since

\[
\sup_{t \in [0,1]} |E_{n}(t) - B_{n}(F(t))| = C_{p}(n^{-1/2} \log n),
\]

we can write

\[
X_{n}(s) = n^{-1/6} \{W_{n}(F(t) + sn^{-1/3}) - W_{n}(F(t))\} + C_{p}(n^{-1/6} \log n),
\]

where the big \(C \)-term is uniform for \(s \in I \). By using Brownian scaling, a simple Taylor expansion, and the uniform continuity of Brownian motion on compacta, we find that

\[
X_{n}(s) \overset{d}{=} W(f(t)s) + R_{n}(s),
\]

where \(\sup_{s \in I} |R_{n}(s)| \rightarrow 0 \) in probability. From this representation it follows immediately that the process \(\{X_{n}(s) : s \in I\} \) satisfies the conditions of Theorem V.3 in Pollard (1984). This proves the lemma.

Proof of Lemma 1.2. Note that the concave majorants of \(Z \) on \([-d,d]\) and on \(\mathbb{R} \) are the same on the interval \([-d/2,d/2]\) as soon as their values coincide at the boundary points \(\pm d/2 \). Hence, by symmetry

\[
P(N(d)^{c}) \leq 2P([CM_{R}Z](d/2) > [CM_{[-d,d]}Z](d/2))
\]

\[
\leq 2P([CM_{R}Z](d/2) > [CM_{[0,d]}Z](d/2)).
\]

From Lemma 3.2 in Durot and Toquet (2002), with \(c = d/4 \) and \(t = d/2 \) the latter probability is bounded by \(8 \exp(-d^{3}/2^{7}) \).
Proof of Lemma 1.3. Define \hat{f}_n as the left-derivative of \hat{F}_n. Define

$$U_n(a) = \arg\max_{t \in [0,1]} \{ F_n(t) - at \} \quad \text{and} \quad V_n(a) = n^{1/3}(U_n(a) - g(a)),$$

where g denotes the inverse of f. The process U_n is related to \hat{f}_n by

$$\hat{f}_n(t) \leq a \iff U_n(a) \leq t,$$

with probability one. First suppose that $0 < t - dn^{-1/3} < t + dn^{-1/3} < 1$, so that $I_n(d) = [t - dn^{-1/3}, t + dn^{-1/3}]$. On the event $N_n(d)^c$, the concave majorants of F_n on the intervals $[0, 1]$ and $[t - dn^{-1/3}, t + dn^{-1/3}]$ differ either at $s = t - dn^{-1/3}/2$ or at $s = t + dn^{-1/3}/2$. A simple picture shows that in that case \hat{f}_n cannot have a point of jump both on the intervals $[t - dn^{-1/3}, t - dn^{-1/3}/2]$ and $[t + dn^{-1/3}/2, t + dn^{-1/3}]$. This implies

$$P[N_n(d)^c] \leq P[\hat{f}_n(t - n^{-1/3}d) = \hat{f}_n(t - n^{-1/3}d/2)] + P[\hat{f}_n(t + n^{-1/3}d) = \hat{f}_n(t + n^{-1/3}d/2)].$$

Consider the first probability on the right-hand side of (2.2). Define $\epsilon_n = \frac{1}{3}\inf |f'|dn^{-1/3}$. Then with $s = t - n^{-1/3}d$ and $x = d/2$, we have

$$P[\hat{f}_n(t - n^{-1/3}d) = \hat{f}_n(t - n^{-1/3}d/2)]
= P[\hat{f}_n(s + n^{-1/3}x) = \hat{f}_n(s)]
\leq P[\hat{f}_n(s + n^{-1/3}x) - f(s + n^{-1/3}x) < n^{-1/3}x\inf |f'|]
\leq P[\hat{f}_n(s + n^{-1/3}x) - f(s + n^{-1/3}x) > \epsilon_n] + P[\hat{f}_n(s) - f(s) < -\epsilon_n].$$

By using (2.1), the first probability on the right-hand side of (2.3) is equal to

$$P[U_n(f(s + xn^{-1/3}) + \epsilon_n) > s + n^{-1/3}x]
= P[V_n(f(s + xn^{-1/3}) + \epsilon_n) > n^{1/3}(s + n^{-1/3}x - g(f(s + xn^{-1/3}) + \epsilon_n))]
\leq P \left\{ V_n(f(s + xn^{-1/3}) + \epsilon_n) > \frac{\inf |f'|d}{8 \sup |f'|} \right\}.$$

Clearly, $f(s + xn^{-1/3}) + \epsilon_n \geq f(s) + \epsilon_n$, and since $t > dn^{-1/3}$, it follows that $f(s + xn^{-1/3}) + \epsilon_n = f(t - dn^{-1/3}/2) + \epsilon_n < f(0)$. According to Theorem 2.1 in Groeneboom et al. (1999) (note that the proof of this theorem does not use that f'' exists), for $a \in (f(1), f(0))$ and $x > 0$, $P[V_n(a) \geq x] \leq 2e^{-Mx^2}$, with $M > 0$ only depending on f. This means that

$$P \left\{ V_n(f(s + xn^{-1/3}) + \epsilon_n) > \frac{\inf |f'|d}{8 \sup |f'|} \right\} \leq 2e^{-Cd^3},$$

for some constant $C > 0$ not depending on n, t and d. The second probability on the right-hand side of (2.3) can be bounded similarly,

$$P[\hat{f}_n(s) - f(s) < -\epsilon_n] \leq 2e^{-Cd^3}.$$

Together with (2.4) we conclude that the probability of the first event on the right-hand side of (2.2) can be bounded as follows

$$P[\hat{f}_n(t - n^{-1/3}d) = \hat{f}_n(t - n^{-1/3}d/2)] \leq 4e^{-Cd^3}.$$

The probability of the second event on the right-hand side of (2.2) can be bounded similarly, by taking $s = t + n^{-1/3}d/2$ and $x = d/2$ and using the same argument as above. This proves the lemma for the case $0 < t - dn^{-1/3} < t + dn^{-1/3} < 1$.

When $0 < t - dn^{-1/3} < t + dn^{-1/3} < 1$, then $I_n(d) = [t - dn^{-1/3}, 1]$ and on $N_n(d)^c$ the concave majorants of F_n on the intervals $[0, 1]$ and $[t - dn^{-1/3}, 1]$ differ at $s = t - dn^{-1/3}/2$. In that case \hat{f}_n cannot have a point of jump on the interval $[t - dn^{-1/3}, t - dn^{-1/3}/2]$, so that

$$P[N_n(d)^c] \leq P[\hat{f}_n(t - n^{-1/3}d) = \hat{f}_n(t - n^{-1/3}d/2)] \leq 4e^{-Cd^3}.$$
Finally, when $t - dn^{-1/3} \leq 0 < t + dn^{-1/3} < 1$, then $I_n(d) = [0, t + dn^{-1/3}]$ and on $N_n(d)$ the concave majorants of F_n on the intervals $[0, 1]$ and $[0, t + dn^{-1/3}]$ differ at $s = t + dn^{-1/3}/2$. In that case \hat{f}_n cannot have a point of jump on the interval $[t + dn^{-1/3}/2, t + dn^{-1/3}]$, so that

$$P(N_n(d)) \leq P(\hat{f}_n(t + n^{-1/3} - d) = \hat{f}_n(t + n^{-1/3}/2)) \leq 4e^{-Cd}. \quad \Box$$

Proof of Theorem 1.1. Similar to the proof of Lemma 1.1 it is enough to show that for any compact set $K \subseteq \mathbb{R}$, the process $\{\zeta_n(s) : s \in K\}$ converges in distribution to the process $\{\zeta(s) : s \in K\}$ on $D(K)$. Note that for this, it suffices to show that the process $\{A_n(t + sn^{-1/3}) : s \in K\}$ converges in distribution to the process $\{D_n Z_s(s) : s \in K\}$, where

$$Z_t(s) = W(f(t)s) + \frac{1}{2}f'(t)s^2. \quad (2.5)$$

This follows from the fact that by Brownian scaling $c_1(t) Z_t(c_2(t)s) \overset{d}{=} Z(s) = W(s) - s^2$.

Let $t \in (0, 1)$ fixed, and let $I_{nt} = [-tn^{1/3}, (1 - t)n^{1/3}]$. Write $E_{nt}(s) = n^{2/3}F_n(t + sn^{-1/3})$, for $s \in I_{nt}$. Then by definition

$$A_n(t + sn^{-1/3}) = [D_n E_{nt}(s) : s \in K]. \quad \text{for } s \in I_{nt}. \quad (2.6)$$

Now consider K is fixed. For the processes $\{D_n E_{nt}(s) : s \in K\}$ and $\{D_n Z_s(s) : s \in K\}$, we must show that for any $g : D(K) \rightarrow \mathbb{R}$ bounded and continuous:

$$|E g(D_n E_{nt}(s)) - E g(D_n Z_s(s))| \rightarrow 0. \quad \text{for } t \rightarrow 0.$$

Let $\varepsilon > 0$ and let $I = [-d/d, d/d]$ be an interval, where $d > 0$ is chosen sufficiently large such that $K \subseteq [-d/2, d/2]$, and such that according to Lemmas 1.2 and 1.3

$$P(N(d/c_2(t))) < \varepsilon \quad \text{and} \quad P(N_n(d)) < \varepsilon, \quad (2.7)$$

where $N(d)$ and $N_n(d)$ are defined in (1.7) and (1.8). Let n be sufficiently large, such that $K \subseteq [-d/2, d/2] \subseteq I \subseteq I_{nt}$. For $g : D(K) \rightarrow \mathbb{R}$ bounded and continuous, and processes $\{D_n E_{nt}(s) : s \in K\}$, $\{D_n Z_s(s) : s \in K\}$, and $\{D_n Z_s(s) : s \in K\}$, we have

$$|E g(D_n E_{nt}(s)) - E g(D_n Z_s(s))| \leq |E g(D_n E_{nt}(s)) - E g(D_n Z_s(s))|$$

$$+ |E g(D_n Z_s(s)) - E g(D_n Z_s(s))|$$

$$\leq |E g(D_n Z_s(s)) - E g(D_n Z_s(s))|. \quad (2.8)$$

For the last term on the right-hand side of (2.7) we have that

$$|E g(D_n Z_s(s)) - E g(D_n Z_s(s))| \leq 2 \sup |g| \cdot P(D_n Z_s(s) \neq D_n Z_s(s) \text{ on } [t])$$

$$\leq 2 \sup |g| \cdot P(D_n Z_s(s) \neq D_n Z_s(s) \text{ on } [-d/2, d/2]).$$

Since $c_1(t) Z_t(c_2(t)s) \overset{d}{=} Z(s)$, the latter probability is bounded by $P(N(d/c_2(t)))$, so that (2.6) yields

$$|E g(D_n Z_s(s)) - E g(D_n Z_s(s))| \leq 2 \sup |g| \cdot \varepsilon. \quad (2.9)$$

The first term can be bounded similarly:

$$|E g(D_n E_{nt}(s)) - E g(D_n E_{nt}(s))| \leq 2 \sup |g| \cdot P(CM_n E_{nt} \neq CM_n E_{nt} \text{ on } [-d/2, d/2])$$

$$\leq 2 \sup |g| \cdot P(N_n(d)) \leq 2 \sup |g| \cdot \varepsilon. \quad (2.10)$$

In order to bound the second term on the right-hand side of (2.7), define

$$Z_n(s) = n^{2/3}(F_n(t + sn^{-1/3}) - F_n(t) - (F(t + sn^{-1/3}) - F(t))) + \frac{1}{2}f'(t)s^2.$$

It follows from Lemma 1.1, that the process $\{Z_n(s) : s \in I\}$ converges in distribution to the process $\{Z_t(s) : s \in I\}$. Because the mapping $D_t : D(I) \rightarrow D(I)$ is continuous, this means that

$$|E h(D_t Z_n) - E h(D_t Z_n)| \rightarrow 0,$$

for any $h : D(I) \rightarrow \mathbb{R}$ bounded and continuous. Note that we can also write

$$E_{nt}(s) = Z_{nt}(s) + n^{2/3}F_n(t) + f(t)sn^{1/3} + R_{nt}(s).$$
where
\[
R_{nt}(s) = n^{2/3} [F(t + sn^{-1/3}) - F(t) - f(t)sn^{-1/3} - \frac{1}{2}f'(t)s^2 n^{-2/3}].
\]
Note that for some \(|y - t| \leq n^{-1/3}|s|\), with \(s \in I\), we have
\[
R_{nt}(s) = \frac{1}{2}f'(y) - f'(t)|s^2 | \to 0,
\]
uniformly for \(s \in I\), using that \(f'\) is continuous. By continuity of the mapping \(D_I\) together with the property that \(D_I\) is invariant under addition of linear functions, it then follows that on \(I\):
\[
D_I Z_{nt} = D_I(E_{nt} - R_{nt}) = D_I E_{nt} + o(1),
\]
where the \(o(1)\)-term is uniform for \(s \in I\). We conclude that for any \(h : D(I) \to \mathbb{R}\) bounded and continuous, and processes \(\{[D_I E_{nt}](s) : s \in I\}\) and \(\{[D_I Z_{t}](s) : s \in I\}\),
\[
|E h(D_I E_{nt}) - E h(D_I Z_{t})| \to 0. \tag{2.10}
\]
Now let \(\pi_K : D(I) \to D(K)\) be defined as the restriction of an element of \(D(I)\) to the set \(K\). Since for any \(g : D(K) \to \mathbb{R}\) bounded and continuous the composition \(h = g \circ \pi_K\) is also bounded and continuous, \(2.10\) implies that for \(g : D(K) \to \mathbb{R}\) bounded and continuous, and processes \(\{[D_I E_{nt}](s) : s \in K\}\) and \(\{[D_I Z_{t}](s) : s \in K\}\),
\[
|E g(D_I E_{nt}) - E g(D_I Z_{t})| \to 0. \tag{2.11}
\]
Putting together \(2.8\), \(2.9\), \(2.11\) and \(2.7\) proves the theorem. \(\square\)

Acknowledgements

We thank the referee for his/her suggestions, which helped us to improve the paper. Especially, we thank the referee for providing a simpler proof of Lemma 1.2.

References